] >

A communications satellite is a radio relay station in orbit above the earth that receives, amplifies, and redirects analog and digital signals carried on a specific radio frequency.
In addition to communications satellites, there are other types of satellites:
An orbit is the path that a satellite follows as it revolves around Earth. In terms of commercial satellites, there are three main categories of orbits:
Geosynchronous Orbit (GEO): 35,786 km above the earth

Medium Earth Orbit (MEO): 8,000-20,000 km above the earth

Low Earth Orbit (LEO): 500-2,000 km above the earth

GEO vs. MEO vs. LEO
Most communications satellites in use today for commercial purposes are placed in the geostationary orbit, because of the following advantages:
For a more comprehensive understanding of satellite advantages, see benefits of satellite.
Communications data passes through a satellite using a signal path known as a transponder. Typically satellites have between 24 and 72 transponders. A single transponder is capable of handling up to 155 million bits of information per second. With this immense capacity, today's communication satellites are an ideal medium for transmitting and receiving almost any kind of content - from simple voice or data to the most complex and bandwidth-intensive video, audio and Internet content.
Diagrammatic Representation of a Satellite

The location of a geostationary satellite is referred to as its orbital location. International satellites are normally measured in terms of longitudinal degrees East (° E) from the Prime Meridian of 0° (for example, Intelsat's IS-805 satellite is currently located at 304.5° E).
The geographic area of the Earth's surface over which a satellite can transmit to, or receive from, is called the satellite's "footprint." The footprint can be tailored to include beams with different frequencies and power levels.
Satellites transmit information within radio frequency bands. The frequency bands most used by satellite communications companies are called C-band and the higher Ku-band. Over the next several years, the use of a higher frequency band known as Ka-band is expected to increase. Modern satellites are designed to focus on different ranges of frequency bands and different power levels at particular geographic areas. These focus areas are called beams. Intelsat offers four beam types:
All communications with a geostationary satellite require using an earth station or antenna. Earth Stations may be either fixed (installed at a specific location) or mobile for uses such as Satellite News Gathering (SNG) or maritime applications. Antennas range in size, from large telecommunications carrier dishes of 4.5 to 15 meters in diameter, to VSAT antennas which can be as small as under one meter, designed to support services such as Direct to Home TV (DTH) and rural telephony.
The antenna, itself, will generally be connected to equipment indoors called an indoor unit (IDU), which then connects either to the actual communications devices being used, to a Local Area Network (LAN), or to additional terrestrial network infrastructure.
Depending on the application, satellites can be used with different ground network designs or network topologies. At its simplest, satellite can support one-direction or two-direction links between two earth stations (called respectively simplex transmission and duplex transmission). More complex communications needs can also be addressed with more sophisticated network topologies, such as star and mesh.
The following examples show some of the options available to customers for configuring their satellite networks:
Simplex Transmission

Applications for simplex services include broadcast transmissions such as:
Point-to-Point Duplex Transmission

Applications for duplex services include:
Point-to-Multipoint Transmission

(May be simplex or duplex, symmetric or asymmetric).
Applications for point-to-multipoint services include:
Mobile Antenna Service

Applications for mobile antenna services include:
Star Network

Applications for Star Networks include:
Mesh Network
Applications for Mesh Networks include:
